Green polymerization methods : (Record no. 42866)

MARC details
000 -LEADER
fixed length control field 09929cam a22003377a 4500
001 - CONTROL NUMBER
control field 17597843
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20210630065625.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 130122s2011 gw a b 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2012472726
015 ## - NATIONAL BIBLIOGRAPHY NUMBER
National bibliography number GBB0B1385
Source bnb
016 7# - NATIONAL BIBLIOGRAPHIC AGENCY CONTROL NUMBER
Record control number 015650136
Source Uk
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783527326259 (alk. paper)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 3527326251 (alk. paper)
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)ocn664325840
040 ## - CATALOGING SOURCE
Original cataloging agency UKM
Transcribing agency UKM
Modifying agency YDXCP
-- CDX
-- NUI
-- UPM
-- UKMGB
-- OHX
-- BDX
-- DLC
042 ## - AUTHENTICATION CODE
Authentication code lccopycat
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TP156.P6
Item number G74 2011
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 668.9
Edition number 22
245 00 - TITLE STATEMENT
Title Green polymerization methods :
Remainder of title renewable starting materials, catalysis and waste reduction /
Statement of responsibility, etc. edited by Robert T. Mathers and Michael A.R. Meier.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Weinheim, Germany :
Name of publisher, distributor, etc. Wiley-VCH Verlag,
Date of publication, distribution, etc. c2011.
300 ## - PHYSICAL DESCRIPTION
Extent xv, 363 p. :
Other physical details ill. (some col.) ;
Dimensions 25 cm.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references and index.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Machine generated contents note: pt. I Introduction -- 1.Why are Green Polymerization Methods Relevant to Society, Industry, and Academics? / Michael A. R. Meier -- 1.1.Status and Outlook for Environmentally Benign Processes -- 1.2.Importance of Catalysis -- 1.3.Brief Summaries of Contributions -- References -- pt. II Integration of Renewable Starting Materials -- 2.Plant Oils as Renewable Feedstock for Polymer Science / Michael A. R. Meier -- 2.1.Introduction -- 2.2.Cross-Linked Materials -- 2.3.Non-Cross-Linked Polymers -- 2.3.1.Monomer Synthesis -- 2.3.2.Polymer Synthesis -- 2.4.Conclusion -- References -- 3.Furans as Offsprings of Sugars and Polysaccharides and Progenitors of an Emblematic Family of Polymer Siblings / Alessandro Gandini -- 3.1.Introduction -- 3.2.First Generation Furans and their Conversion into Monomers -- 3.2.1.Furfural and Derivatives -- 3.2.2.Monomers from Furfural -- 3.2.3.Hydroxymethylfurfural -- 3.3.Polymers from Furfuryl Alcohol -- 3.4.Conjugated Polymers and Oligomers -- 3.5.Polyesters -- 3.6.Polyamides -- 3.7.Polyurethanes -- 3.8.Furyl Oxirane -- 3.9.Application of the Diels-Alder Reaction to Furan Polymers -- 3.9.1.Linear Polymerizations -- 3.9.2.Non-linear Polymerizations -- 3.9.3.Reversible Polymer Cross-linking -- 3.9.4.Miscellaneous Systems -- 3.10.Conclusions -- References -- 4.Selective Conversion of Glycerol into Functional Monomers via Catalytic Processes / Joel Barrault -- 4.1.Introduction -- 4.2.Conversion of Glycerol into Glycerol Carbonate -- 4.3.Conversion of Glycerol into Acrolein/Acrylic Acid -- 4.4.Conversion of Glycerol into Glycidol -- 4.5.Oxidation of Glycerol to Functional Carboxylic Acid -- 4.5.1.Catalytic Oxidation of Glycerol to Glyceric Acid -- 4.5.2.Oxidative-Assisted Polymerization of Glycerol -- 4.5.2.1.Cationic Polymerization -- 4.5.2.2.Anionic Polymerization -- 4.6.Conversion of Glycerol into Acrylonitrile -- 4.7.Selective Conversion of Glycerol into Propylene Glycol -- 4.7.1.Conversion of Glycerol into Propylene Glycol -- 4.7.1.1.Reaction in the liquid Phase -- 4.7.1.2.Reaction in the Gas Phase -- 4.7.2.Conversion of Glycerol into 1,3-Propanediol -- 4.8.Selective Coupling of Glycerol with Functional Monomers -- 4.9.Conclusion -- References -- pt. III Sustainable Reaction Conditions -- 5.Monoterpenes as Polymerization Solvents and Monomers in Polymer Chemistry / Stewart P. Lewis -- 5.1.Introduction -- 5.2.Monoterpenes as Monomers -- 5.2.1.Terpenic Resins Overview -- 5.2.2.Concepts of Cationic Olefin Polymerization -- 5.2.3.Cationic Polymerization of β-Pinene -- 5.2.4.Cationic Polymerization of Dipentene -- 5.2.5.Cationic Polymerization of α-Pinene -- 5.2.6.Characteristics of Terpenic Resins -- 5.2.7.Applications of Terpenic Resins -- 5.2.8.Commercial Production and Markets of Terpenic Resins -- 5.2.9.Environmental Aspects of Terpenic Resin Production -- 5.3.Monoterpenes as Solvents and Chain Transfer Agents -- 5.3.1.Possibilities for Replacing Petroleum Solvents -- 5.3.2.Ring-Opening Polymerizations in Monoterpenes -- 5.3.3.Metallocene Polymerizations in Monoterpenes -- 5.4.Conclusion -- Acknowledgments -- References -- 6.Controlled and Living Polymerization in Water: Modern Methods and Application to Bio-Synthetic Hybrid Materials / Todd Emrick -- 6.1.Introduction -- 6.2.Ring-Opening Metathesis Polymerization (ROMP) -- 6.2.1.Water Soluble ROMP Catalysts -- 6.3.Living Free Radical Methods for Bio-Synthetic Hybrid Materials -- Acknowledgments -- References -- 7.Towards Sustainable Solution Polymerization: Biodiesel as a Polymerization Solvent / Somaieh Salehpour -- 7.1.Introduction -- 7.2.Solution Polymerization and Green Solvents -- 7.3.Biodiesel as a Polymerization Solvent -- 7.4.Experimental Section -- 7.4.1.Materials -- 7.4.2.Polymerization -- 7.4.3.Characterization -- 7.5.Effect of FAME Solvent on Polymerization Kinetics -- 7.5.1.Chain Transfer to Solvent Constant -- 7.5.2.Rate Constant -- 7.6.Effect of Biodiesel Feedstock -- 7.6.1.Polymerization Kinetics -- 7.6.2.Polymer Composition -- 7.7.Conclusion -- References -- pt. IV Catalytic Processes -- 8.Ring-Opening Polymerization of Renewable Six-Membered Cyclic Carbonates. Monomer Synthesis and Catalysis / Stephanie J. Wilson -- 8.1.Introduction -- 8.2.Preparation of 1,3-Propanediol from Renewable Resources -- 8.3.Preparation of Dimethylcarbonate from Renewable Resources -- 8.4.Synthesis of Trimethylene Carbonate -- 8.5.Six-Membered Cyclic Carbonates: Thermodynamic Properties of Ring-Opening Polymerization -- 8.6.Catalytic Processes Using Green Catalysts Methods -- 8.6.1.Cationic Ring-Opening Polymerization -- 8.6.2.Anionic Ring-Opening Polymerization -- 8.6.3.Enzymatic Ring-Opening Polymerization -- 8.6.4.Coordination-Insertion Ring-Opening Polymerization -- 8.6.4.1.Groups 13- and 14 Based Catalysts -- 8.6.4.2.Groups 4-12 Based Catalysts -- 8.6.4.3.Lanthanide-Based Catalysts -- 8.6.4.4.Groups 1 and 2 Based Catalysts -- 8.6.5.Organocatalytic Ring-Opening Polymerization -- 8.7.Thermoplastic Elastomers and their Biodegradation Processes -- 8.8.Concluding Remarks -- Acknowledgments -- References -- 9.Poly(lactide)s as Robust Renewable Materials / Andrew P. Dove -- 9.1.Introduction -- 9.1.1.The Lactide Cycle -- 9.2.Ring-Opening Polymerization of Lactide -- 9.2.1.Coordination-Insertion Polymerization -- 9.2.2.Organocatalytic Ring-Opening Polymerization -- 9.3.Poly(lactide) Properties -- 9.3.1.PLA Properties and Processing Effects -- 9.3.2.Polymer Blends -- 9.3.2.1.Poly(Lactide)/Poly(ε-Caprolactone) Blends -- 9.3.2.2.Other Biodegradable/Renewable Polyesters -- 9.4.Thermoplastic Elastomers -- 9.5.Future Developments/Outlook -- References -- 10.Synthesis of Saccharide-Derived Functional Polymers / Joachim Thiem -- 10.1.Introduction -- 10.2.Polyethers -- 10.3.Polyamides -- 10.4.Polyurethanes and Polyureas -- 10.5.Glycosilicones -- References -- 11.Degradable and Biodegradable Polymers by Controlled/Living Radical Polymerization: From Synthesis to Application / Nicolay V. Tsarevsky -- 11.1.Introduction -- 11.2.(Bio)degradable Polymers by CRP -- 11.2.1.Linear (Bio)degradable Polymers -- 11.2.1.1.Polymers with a Degradable Functional Group -- 11.2.1.2.Polymers with a Degradable Polymeric Segment -- 11.2.1.3.Polymers with Multiple Cleavable Groups or Polymeric Segments -- 11.2.2.Degradable Star Polymers -- 11.2.3.Degradable Graft Polymers (Polymer Brushes) -- 11.2.4.Hyperbranched Degradable Polymers -- 11.2.5.Cross-Linked Degradable Polymers -- 11.3.Conclusions -- Abbreviations -- References -- pt. V Biomimetic Methods and Biocatalysis -- 12.High-Performance Polymers from Phenolic Biomonomers / Tatsuo Kaneko -- 12.1.Introduction -- 12.2.Coumarates as Phytomonomers -- 12.3.LC Properties of Homopolymers -- 12.3.1.Syntheses and Structures -- 12.3.2.Solubility -- 12.3.3.Thermotropic Property -- 12.3.4.Ordered Structures -- 12.3.5.Cell Compatibility -- 12.4.LC Copolymers for Biomaterials -- 12.4.1.Lithocholic Acid as Co-monomer -- 12.4.2.Cholic Acid as Co-monomer -- 12.5.LC Copolymers for Photofunctional Polymers -- 12.5.1.Syntheses of P(4HCA-co-DHCA)s -- 12.5.2.Phototunable Hydrolyzes -- 12.5.3.Photoreaction of Nanoparticles -- 12.6.LC Copolymers for High Heat-Resistant Polymers -- 12.6.1.P(4HCA-co-DHCA) Bioplastics -- 12.6.2.Biohybrids -- 12.7.Conclusion -- Acknowledgments -- References -- 13.Enzymatic Polymer Synthesis in Green Chemistry / Inge van Tier Meulen -- 13.1.Introduction -- 13.2.Polymers -- 13.2.1.Polycondensates -- 13.2.1.1.Polyesters by Ring-Opening Polymerization -- 13.2.1.2.Polyesters by Condensation Polymerization -- 13.2.2.Polyphenols -- 13.2.3.Vinyl Polymers -- 13.2.4.Polyanilines -- 13.3.Green Media for Enzymatic Polymerization -- 13.3.1.Ionic Liquids -- 13.3.2.Supercritical Carbon Dioxide -- 13.4.Conclusions and Outlook -- References -- 14.Green Cationic Polymerizations and Polymer Functionalization for Biotechnology / Mustafa Y. Sen -- 14.1.Introduction -- 14.2.Enzyme Catalysis -- 14.2.1.Lipases -- 14.2.2.Candida antarctica Lipase B -- 14.2.3.CALB-Catalyzed Transesterification Reactions -- 14.3."Green" Cationic Polymerizations and Polymer Functionalization Using Lipases -- 14.3.1.Ring-Opening Polymerization -- 14.3.2.Enzyme-Catalyzed Polymer Functionalization -- 14.4.Natural Rubber Biosynthesis -- the Ultimate Green Cationic Polymerization -- 14.4.1.Anatomy of the NR Latex, and Structure of Natural Rubber -- 14.4.1.1.Structure of Natural Rubber -- 14.4.2.Biochemical Pathway of NR Biosynthesis -- 14.4.2.1.Monomer -- 14.4.2.2.Initiators -- 14.4.2.3.Catalyst: Rubber Transferase -- 14.4.3.Chemical Mechanism of Natural Rubber Biosynthesis -- 14.4.4.In vitro NR Biosynthesis -- 14.5.Green Synthetic Cationic Polymerization and Copolymerization of Isoprene.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Polymerization
General subdivision Environmental aspects.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Mathers, Robert T.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Meier, Michael A. R.
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c copycat
d 2
e ncip
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Library of Congress Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Full call number Barcode Date last seen Price effective from Koha item type Copy number
    Library of Congress Classification     University of Eastern Africa, Baraton Main Campus Library Main Stack 30.06.2021   TP156.P6.G74 2011 78681 30.06.2021 30.06.2021 Books  
    Library of Congress Classification     University of Eastern Africa, Baraton Main Campus Library Main Stack 30.06.2021   TP156.P6.G74 2011 79272 01.07.2021 30.06.2021 Books C.2