000 -LEADER | |
---|---|
fixed length control field | 09929cam a22003377a 4500 |
001 - CONTROL NUMBER | |
control field | 17597843 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | OSt |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20210630065625.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 130122s2011 gw a b 001 0 eng |
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER | |
LC control number | 2012472726 |
015 ## - NATIONAL BIBLIOGRAPHY NUMBER | |
National bibliography number | GBB0B1385 |
Source | bnb |
016 7# - NATIONAL BIBLIOGRAPHIC AGENCY CONTROL NUMBER | |
Record control number | 015650136 |
Source | Uk |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9783527326259 (alk. paper) |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 3527326251 (alk. paper) |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)ocn664325840 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | UKM |
Transcribing agency | UKM |
Modifying agency | YDXCP |
-- | CDX |
-- | NUI |
-- | UPM |
-- | UKMGB |
-- | OHX |
-- | BDX |
-- | DLC |
042 ## - AUTHENTICATION CODE | |
Authentication code | lccopycat |
050 00 - LIBRARY OF CONGRESS CALL NUMBER | |
Classification number | TP156.P6 |
Item number | G74 2011 |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 668.9 |
Edition number | 22 |
245 00 - TITLE STATEMENT | |
Title | Green polymerization methods : |
Remainder of title | renewable starting materials, catalysis and waste reduction / |
Statement of responsibility, etc. | edited by Robert T. Mathers and Michael A.R. Meier. |
260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
Place of publication, distribution, etc. | Weinheim, Germany : |
Name of publisher, distributor, etc. | Wiley-VCH Verlag, |
Date of publication, distribution, etc. | c2011. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | xv, 363 p. : |
Other physical details | ill. (some col.) ; |
Dimensions | 25 cm. |
504 ## - BIBLIOGRAPHY, ETC. NOTE | |
Bibliography, etc. note | Includes bibliographical references and index. |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Machine generated contents note: pt. I Introduction -- 1.Why are Green Polymerization Methods Relevant to Society, Industry, and Academics? / Michael A. R. Meier -- 1.1.Status and Outlook for Environmentally Benign Processes -- 1.2.Importance of Catalysis -- 1.3.Brief Summaries of Contributions -- References -- pt. II Integration of Renewable Starting Materials -- 2.Plant Oils as Renewable Feedstock for Polymer Science / Michael A. R. Meier -- 2.1.Introduction -- 2.2.Cross-Linked Materials -- 2.3.Non-Cross-Linked Polymers -- 2.3.1.Monomer Synthesis -- 2.3.2.Polymer Synthesis -- 2.4.Conclusion -- References -- 3.Furans as Offsprings of Sugars and Polysaccharides and Progenitors of an Emblematic Family of Polymer Siblings / Alessandro Gandini -- 3.1.Introduction -- 3.2.First Generation Furans and their Conversion into Monomers -- 3.2.1.Furfural and Derivatives -- 3.2.2.Monomers from Furfural -- 3.2.3.Hydroxymethylfurfural -- 3.3.Polymers from Furfuryl Alcohol -- 3.4.Conjugated Polymers and Oligomers -- 3.5.Polyesters -- 3.6.Polyamides -- 3.7.Polyurethanes -- 3.8.Furyl Oxirane -- 3.9.Application of the Diels-Alder Reaction to Furan Polymers -- 3.9.1.Linear Polymerizations -- 3.9.2.Non-linear Polymerizations -- 3.9.3.Reversible Polymer Cross-linking -- 3.9.4.Miscellaneous Systems -- 3.10.Conclusions -- References -- 4.Selective Conversion of Glycerol into Functional Monomers via Catalytic Processes / Joel Barrault -- 4.1.Introduction -- 4.2.Conversion of Glycerol into Glycerol Carbonate -- 4.3.Conversion of Glycerol into Acrolein/Acrylic Acid -- 4.4.Conversion of Glycerol into Glycidol -- 4.5.Oxidation of Glycerol to Functional Carboxylic Acid -- 4.5.1.Catalytic Oxidation of Glycerol to Glyceric Acid -- 4.5.2.Oxidative-Assisted Polymerization of Glycerol -- 4.5.2.1.Cationic Polymerization -- 4.5.2.2.Anionic Polymerization -- 4.6.Conversion of Glycerol into Acrylonitrile -- 4.7.Selective Conversion of Glycerol into Propylene Glycol -- 4.7.1.Conversion of Glycerol into Propylene Glycol -- 4.7.1.1.Reaction in the liquid Phase -- 4.7.1.2.Reaction in the Gas Phase -- 4.7.2.Conversion of Glycerol into 1,3-Propanediol -- 4.8.Selective Coupling of Glycerol with Functional Monomers -- 4.9.Conclusion -- References -- pt. III Sustainable Reaction Conditions -- 5.Monoterpenes as Polymerization Solvents and Monomers in Polymer Chemistry / Stewart P. Lewis -- 5.1.Introduction -- 5.2.Monoterpenes as Monomers -- 5.2.1.Terpenic Resins Overview -- 5.2.2.Concepts of Cationic Olefin Polymerization -- 5.2.3.Cationic Polymerization of β-Pinene -- 5.2.4.Cationic Polymerization of Dipentene -- 5.2.5.Cationic Polymerization of α-Pinene -- 5.2.6.Characteristics of Terpenic Resins -- 5.2.7.Applications of Terpenic Resins -- 5.2.8.Commercial Production and Markets of Terpenic Resins -- 5.2.9.Environmental Aspects of Terpenic Resin Production -- 5.3.Monoterpenes as Solvents and Chain Transfer Agents -- 5.3.1.Possibilities for Replacing Petroleum Solvents -- 5.3.2.Ring-Opening Polymerizations in Monoterpenes -- 5.3.3.Metallocene Polymerizations in Monoterpenes -- 5.4.Conclusion -- Acknowledgments -- References -- 6.Controlled and Living Polymerization in Water: Modern Methods and Application to Bio-Synthetic Hybrid Materials / Todd Emrick -- 6.1.Introduction -- 6.2.Ring-Opening Metathesis Polymerization (ROMP) -- 6.2.1.Water Soluble ROMP Catalysts -- 6.3.Living Free Radical Methods for Bio-Synthetic Hybrid Materials -- Acknowledgments -- References -- 7.Towards Sustainable Solution Polymerization: Biodiesel as a Polymerization Solvent / Somaieh Salehpour -- 7.1.Introduction -- 7.2.Solution Polymerization and Green Solvents -- 7.3.Biodiesel as a Polymerization Solvent -- 7.4.Experimental Section -- 7.4.1.Materials -- 7.4.2.Polymerization -- 7.4.3.Characterization -- 7.5.Effect of FAME Solvent on Polymerization Kinetics -- 7.5.1.Chain Transfer to Solvent Constant -- 7.5.2.Rate Constant -- 7.6.Effect of Biodiesel Feedstock -- 7.6.1.Polymerization Kinetics -- 7.6.2.Polymer Composition -- 7.7.Conclusion -- References -- pt. IV Catalytic Processes -- 8.Ring-Opening Polymerization of Renewable Six-Membered Cyclic Carbonates. Monomer Synthesis and Catalysis / Stephanie J. Wilson -- 8.1.Introduction -- 8.2.Preparation of 1,3-Propanediol from Renewable Resources -- 8.3.Preparation of Dimethylcarbonate from Renewable Resources -- 8.4.Synthesis of Trimethylene Carbonate -- 8.5.Six-Membered Cyclic Carbonates: Thermodynamic Properties of Ring-Opening Polymerization -- 8.6.Catalytic Processes Using Green Catalysts Methods -- 8.6.1.Cationic Ring-Opening Polymerization -- 8.6.2.Anionic Ring-Opening Polymerization -- 8.6.3.Enzymatic Ring-Opening Polymerization -- 8.6.4.Coordination-Insertion Ring-Opening Polymerization -- 8.6.4.1.Groups 13- and 14 Based Catalysts -- 8.6.4.2.Groups 4-12 Based Catalysts -- 8.6.4.3.Lanthanide-Based Catalysts -- 8.6.4.4.Groups 1 and 2 Based Catalysts -- 8.6.5.Organocatalytic Ring-Opening Polymerization -- 8.7.Thermoplastic Elastomers and their Biodegradation Processes -- 8.8.Concluding Remarks -- Acknowledgments -- References -- 9.Poly(lactide)s as Robust Renewable Materials / Andrew P. Dove -- 9.1.Introduction -- 9.1.1.The Lactide Cycle -- 9.2.Ring-Opening Polymerization of Lactide -- 9.2.1.Coordination-Insertion Polymerization -- 9.2.2.Organocatalytic Ring-Opening Polymerization -- 9.3.Poly(lactide) Properties -- 9.3.1.PLA Properties and Processing Effects -- 9.3.2.Polymer Blends -- 9.3.2.1.Poly(Lactide)/Poly(ε-Caprolactone) Blends -- 9.3.2.2.Other Biodegradable/Renewable Polyesters -- 9.4.Thermoplastic Elastomers -- 9.5.Future Developments/Outlook -- References -- 10.Synthesis of Saccharide-Derived Functional Polymers / Joachim Thiem -- 10.1.Introduction -- 10.2.Polyethers -- 10.3.Polyamides -- 10.4.Polyurethanes and Polyureas -- 10.5.Glycosilicones -- References -- 11.Degradable and Biodegradable Polymers by Controlled/Living Radical Polymerization: From Synthesis to Application / Nicolay V. Tsarevsky -- 11.1.Introduction -- 11.2.(Bio)degradable Polymers by CRP -- 11.2.1.Linear (Bio)degradable Polymers -- 11.2.1.1.Polymers with a Degradable Functional Group -- 11.2.1.2.Polymers with a Degradable Polymeric Segment -- 11.2.1.3.Polymers with Multiple Cleavable Groups or Polymeric Segments -- 11.2.2.Degradable Star Polymers -- 11.2.3.Degradable Graft Polymers (Polymer Brushes) -- 11.2.4.Hyperbranched Degradable Polymers -- 11.2.5.Cross-Linked Degradable Polymers -- 11.3.Conclusions -- Abbreviations -- References -- pt. V Biomimetic Methods and Biocatalysis -- 12.High-Performance Polymers from Phenolic Biomonomers / Tatsuo Kaneko -- 12.1.Introduction -- 12.2.Coumarates as Phytomonomers -- 12.3.LC Properties of Homopolymers -- 12.3.1.Syntheses and Structures -- 12.3.2.Solubility -- 12.3.3.Thermotropic Property -- 12.3.4.Ordered Structures -- 12.3.5.Cell Compatibility -- 12.4.LC Copolymers for Biomaterials -- 12.4.1.Lithocholic Acid as Co-monomer -- 12.4.2.Cholic Acid as Co-monomer -- 12.5.LC Copolymers for Photofunctional Polymers -- 12.5.1.Syntheses of P(4HCA-co-DHCA)s -- 12.5.2.Phototunable Hydrolyzes -- 12.5.3.Photoreaction of Nanoparticles -- 12.6.LC Copolymers for High Heat-Resistant Polymers -- 12.6.1.P(4HCA-co-DHCA) Bioplastics -- 12.6.2.Biohybrids -- 12.7.Conclusion -- Acknowledgments -- References -- 13.Enzymatic Polymer Synthesis in Green Chemistry / Inge van Tier Meulen -- 13.1.Introduction -- 13.2.Polymers -- 13.2.1.Polycondensates -- 13.2.1.1.Polyesters by Ring-Opening Polymerization -- 13.2.1.2.Polyesters by Condensation Polymerization -- 13.2.2.Polyphenols -- 13.2.3.Vinyl Polymers -- 13.2.4.Polyanilines -- 13.3.Green Media for Enzymatic Polymerization -- 13.3.1.Ionic Liquids -- 13.3.2.Supercritical Carbon Dioxide -- 13.4.Conclusions and Outlook -- References -- 14.Green Cationic Polymerizations and Polymer Functionalization for Biotechnology / Mustafa Y. Sen -- 14.1.Introduction -- 14.2.Enzyme Catalysis -- 14.2.1.Lipases -- 14.2.2.Candida antarctica Lipase B -- 14.2.3.CALB-Catalyzed Transesterification Reactions -- 14.3."Green" Cationic Polymerizations and Polymer Functionalization Using Lipases -- 14.3.1.Ring-Opening Polymerization -- 14.3.2.Enzyme-Catalyzed Polymer Functionalization -- 14.4.Natural Rubber Biosynthesis -- the Ultimate Green Cationic Polymerization -- 14.4.1.Anatomy of the NR Latex, and Structure of Natural Rubber -- 14.4.1.1.Structure of Natural Rubber -- 14.4.2.Biochemical Pathway of NR Biosynthesis -- 14.4.2.1.Monomer -- 14.4.2.2.Initiators -- 14.4.2.3.Catalyst: Rubber Transferase -- 14.4.3.Chemical Mechanism of Natural Rubber Biosynthesis -- 14.4.4.In vitro NR Biosynthesis -- 14.5.Green Synthetic Cationic Polymerization and Copolymerization of Isoprene. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | Polymerization |
General subdivision | Environmental aspects. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Mathers, Robert T. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Meier, Michael A. R. |
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN) | |
a | 7 |
b | cbc |
c | copycat |
d | 2 |
e | ncip |
f | 20 |
g | y-gencatlg |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | Library of Congress Classification |
Koha item type | Books |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Home library | Current library | Shelving location | Date acquired | Total Checkouts | Full call number | Barcode | Date last seen | Price effective from | Koha item type | Copy number |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Library of Congress Classification | University of Eastern Africa, Baraton | Main Campus Library | Main Stack | 30.06.2021 | TP156.P6.G74 2011 | 78681 | 30.06.2021 | 30.06.2021 | Books | ||||||
Library of Congress Classification | University of Eastern Africa, Baraton | Main Campus Library | Main Stack | 30.06.2021 | TP156.P6.G74 2011 | 79272 | 01.07.2021 | 30.06.2021 | Books | C.2 |