Amazon cover image
Image from Amazon.com

Green polymerization methods : renewable starting materials, catalysis and waste reduction / edited by Robert T. Mathers and Michael A.R. Meier.

Contributor(s): Material type: TextTextPublication details: Weinheim, Germany : Wiley-VCH Verlag, c2011.Description: xv, 363 p. : ill. (some col.) ; 25 cmISBN:
  • 9783527326259 (alk. paper)
  • 3527326251 (alk. paper)
Subject(s): DDC classification:
  • 668.9 22
LOC classification:
  • TP156.P6 G74 2011
Contents:
Machine generated contents note: pt. I Introduction -- 1.Why are Green Polymerization Methods Relevant to Society, Industry, and Academics? / Michael A. R. Meier -- 1.1.Status and Outlook for Environmentally Benign Processes -- 1.2.Importance of Catalysis -- 1.3.Brief Summaries of Contributions -- References -- pt. II Integration of Renewable Starting Materials -- 2.Plant Oils as Renewable Feedstock for Polymer Science / Michael A. R. Meier -- 2.1.Introduction -- 2.2.Cross-Linked Materials -- 2.3.Non-Cross-Linked Polymers -- 2.3.1.Monomer Synthesis -- 2.3.2.Polymer Synthesis -- 2.4.Conclusion -- References -- 3.Furans as Offsprings of Sugars and Polysaccharides and Progenitors of an Emblematic Family of Polymer Siblings / Alessandro Gandini -- 3.1.Introduction -- 3.2.First Generation Furans and their Conversion into Monomers -- 3.2.1.Furfural and Derivatives -- 3.2.2.Monomers from Furfural -- 3.2.3.Hydroxymethylfurfural -- 3.3.Polymers from Furfuryl Alcohol -- 3.4.Conjugated Polymers and Oligomers -- 3.5.Polyesters -- 3.6.Polyamides -- 3.7.Polyurethanes -- 3.8.Furyl Oxirane -- 3.9.Application of the Diels-Alder Reaction to Furan Polymers -- 3.9.1.Linear Polymerizations -- 3.9.2.Non-linear Polymerizations -- 3.9.3.Reversible Polymer Cross-linking -- 3.9.4.Miscellaneous Systems -- 3.10.Conclusions -- References -- 4.Selective Conversion of Glycerol into Functional Monomers via Catalytic Processes / Joel Barrault -- 4.1.Introduction -- 4.2.Conversion of Glycerol into Glycerol Carbonate -- 4.3.Conversion of Glycerol into Acrolein/Acrylic Acid -- 4.4.Conversion of Glycerol into Glycidol -- 4.5.Oxidation of Glycerol to Functional Carboxylic Acid -- 4.5.1.Catalytic Oxidation of Glycerol to Glyceric Acid -- 4.5.2.Oxidative-Assisted Polymerization of Glycerol -- 4.5.2.1.Cationic Polymerization -- 4.5.2.2.Anionic Polymerization -- 4.6.Conversion of Glycerol into Acrylonitrile -- 4.7.Selective Conversion of Glycerol into Propylene Glycol -- 4.7.1.Conversion of Glycerol into Propylene Glycol -- 4.7.1.1.Reaction in the liquid Phase -- 4.7.1.2.Reaction in the Gas Phase -- 4.7.2.Conversion of Glycerol into 1,3-Propanediol -- 4.8.Selective Coupling of Glycerol with Functional Monomers -- 4.9.Conclusion -- References -- pt. III Sustainable Reaction Conditions -- 5.Monoterpenes as Polymerization Solvents and Monomers in Polymer Chemistry / Stewart P. Lewis -- 5.1.Introduction -- 5.2.Monoterpenes as Monomers -- 5.2.1.Terpenic Resins Overview -- 5.2.2.Concepts of Cationic Olefin Polymerization -- 5.2.3.Cationic Polymerization of β-Pinene -- 5.2.4.Cationic Polymerization of Dipentene -- 5.2.5.Cationic Polymerization of α-Pinene -- 5.2.6.Characteristics of Terpenic Resins -- 5.2.7.Applications of Terpenic Resins -- 5.2.8.Commercial Production and Markets of Terpenic Resins -- 5.2.9.Environmental Aspects of Terpenic Resin Production -- 5.3.Monoterpenes as Solvents and Chain Transfer Agents -- 5.3.1.Possibilities for Replacing Petroleum Solvents -- 5.3.2.Ring-Opening Polymerizations in Monoterpenes -- 5.3.3.Metallocene Polymerizations in Monoterpenes -- 5.4.Conclusion -- Acknowledgments -- References -- 6.Controlled and Living Polymerization in Water: Modern Methods and Application to Bio-Synthetic Hybrid Materials / Todd Emrick -- 6.1.Introduction -- 6.2.Ring-Opening Metathesis Polymerization (ROMP) -- 6.2.1.Water Soluble ROMP Catalysts -- 6.3.Living Free Radical Methods for Bio-Synthetic Hybrid Materials -- Acknowledgments -- References -- 7.Towards Sustainable Solution Polymerization: Biodiesel as a Polymerization Solvent / Somaieh Salehpour -- 7.1.Introduction -- 7.2.Solution Polymerization and Green Solvents -- 7.3.Biodiesel as a Polymerization Solvent -- 7.4.Experimental Section -- 7.4.1.Materials -- 7.4.2.Polymerization -- 7.4.3.Characterization -- 7.5.Effect of FAME Solvent on Polymerization Kinetics -- 7.5.1.Chain Transfer to Solvent Constant -- 7.5.2.Rate Constant -- 7.6.Effect of Biodiesel Feedstock -- 7.6.1.Polymerization Kinetics -- 7.6.2.Polymer Composition -- 7.7.Conclusion -- References -- pt. IV Catalytic Processes -- 8.Ring-Opening Polymerization of Renewable Six-Membered Cyclic Carbonates. Monomer Synthesis and Catalysis / Stephanie J. Wilson -- 8.1.Introduction -- 8.2.Preparation of 1,3-Propanediol from Renewable Resources -- 8.3.Preparation of Dimethylcarbonate from Renewable Resources -- 8.4.Synthesis of Trimethylene Carbonate -- 8.5.Six-Membered Cyclic Carbonates: Thermodynamic Properties of Ring-Opening Polymerization -- 8.6.Catalytic Processes Using Green Catalysts Methods -- 8.6.1.Cationic Ring-Opening Polymerization -- 8.6.2.Anionic Ring-Opening Polymerization -- 8.6.3.Enzymatic Ring-Opening Polymerization -- 8.6.4.Coordination-Insertion Ring-Opening Polymerization -- 8.6.4.1.Groups 13- and 14 Based Catalysts -- 8.6.4.2.Groups 4-12 Based Catalysts -- 8.6.4.3.Lanthanide-Based Catalysts -- 8.6.4.4.Groups 1 and 2 Based Catalysts -- 8.6.5.Organocatalytic Ring-Opening Polymerization -- 8.7.Thermoplastic Elastomers and their Biodegradation Processes -- 8.8.Concluding Remarks -- Acknowledgments -- References -- 9.Poly(lactide)s as Robust Renewable Materials / Andrew P. Dove -- 9.1.Introduction -- 9.1.1.The Lactide Cycle -- 9.2.Ring-Opening Polymerization of Lactide -- 9.2.1.Coordination-Insertion Polymerization -- 9.2.2.Organocatalytic Ring-Opening Polymerization -- 9.3.Poly(lactide) Properties -- 9.3.1.PLA Properties and Processing Effects -- 9.3.2.Polymer Blends -- 9.3.2.1.Poly(Lactide)/Poly(ε-Caprolactone) Blends -- 9.3.2.2.Other Biodegradable/Renewable Polyesters -- 9.4.Thermoplastic Elastomers -- 9.5.Future Developments/Outlook -- References -- 10.Synthesis of Saccharide-Derived Functional Polymers / Joachim Thiem -- 10.1.Introduction -- 10.2.Polyethers -- 10.3.Polyamides -- 10.4.Polyurethanes and Polyureas -- 10.5.Glycosilicones -- References -- 11.Degradable and Biodegradable Polymers by Controlled/Living Radical Polymerization: From Synthesis to Application / Nicolay V. Tsarevsky -- 11.1.Introduction -- 11.2.(Bio)degradable Polymers by CRP -- 11.2.1.Linear (Bio)degradable Polymers -- 11.2.1.1.Polymers with a Degradable Functional Group -- 11.2.1.2.Polymers with a Degradable Polymeric Segment -- 11.2.1.3.Polymers with Multiple Cleavable Groups or Polymeric Segments -- 11.2.2.Degradable Star Polymers -- 11.2.3.Degradable Graft Polymers (Polymer Brushes) -- 11.2.4.Hyperbranched Degradable Polymers -- 11.2.5.Cross-Linked Degradable Polymers -- 11.3.Conclusions -- Abbreviations -- References -- pt. V Biomimetic Methods and Biocatalysis -- 12.High-Performance Polymers from Phenolic Biomonomers / Tatsuo Kaneko -- 12.1.Introduction -- 12.2.Coumarates as Phytomonomers -- 12.3.LC Properties of Homopolymers -- 12.3.1.Syntheses and Structures -- 12.3.2.Solubility -- 12.3.3.Thermotropic Property -- 12.3.4.Ordered Structures -- 12.3.5.Cell Compatibility -- 12.4.LC Copolymers for Biomaterials -- 12.4.1.Lithocholic Acid as Co-monomer -- 12.4.2.Cholic Acid as Co-monomer -- 12.5.LC Copolymers for Photofunctional Polymers -- 12.5.1.Syntheses of P(4HCA-co-DHCA)s -- 12.5.2.Phototunable Hydrolyzes -- 12.5.3.Photoreaction of Nanoparticles -- 12.6.LC Copolymers for High Heat-Resistant Polymers -- 12.6.1.P(4HCA-co-DHCA) Bioplastics -- 12.6.2.Biohybrids -- 12.7.Conclusion -- Acknowledgments -- References -- 13.Enzymatic Polymer Synthesis in Green Chemistry / Inge van Tier Meulen -- 13.1.Introduction -- 13.2.Polymers -- 13.2.1.Polycondensates -- 13.2.1.1.Polyesters by Ring-Opening Polymerization -- 13.2.1.2.Polyesters by Condensation Polymerization -- 13.2.2.Polyphenols -- 13.2.3.Vinyl Polymers -- 13.2.4.Polyanilines -- 13.3.Green Media for Enzymatic Polymerization -- 13.3.1.Ionic Liquids -- 13.3.2.Supercritical Carbon Dioxide -- 13.4.Conclusions and Outlook -- References -- 14.Green Cationic Polymerizations and Polymer Functionalization for Biotechnology / Mustafa Y. Sen -- 14.1.Introduction -- 14.2.Enzyme Catalysis -- 14.2.1.Lipases -- 14.2.2.Candida antarctica Lipase B -- 14.2.3.CALB-Catalyzed Transesterification Reactions -- 14.3."Green" Cationic Polymerizations and Polymer Functionalization Using Lipases -- 14.3.1.Ring-Opening Polymerization -- 14.3.2.Enzyme-Catalyzed Polymer Functionalization -- 14.4.Natural Rubber Biosynthesis -- the Ultimate Green Cationic Polymerization -- 14.4.1.Anatomy of the NR Latex, and Structure of Natural Rubber -- 14.4.1.1.Structure of Natural Rubber -- 14.4.2.Biochemical Pathway of NR Biosynthesis -- 14.4.2.1.Monomer -- 14.4.2.2.Initiators -- 14.4.2.3.Catalyst: Rubber Transferase -- 14.4.3.Chemical Mechanism of Natural Rubber Biosynthesis -- 14.4.4.In vitro NR Biosynthesis -- 14.5.Green Synthetic Cationic Polymerization and Copolymerization of Isoprene.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Shelving location Call number Copy number Status Barcode
Books Books Main Campus Library University of Eastern Africa, Baraton Main Stack TP156.P6.G74 2011 (Browse shelf(Opens below)) Available 78681
Books Books Main Campus Library University of Eastern Africa, Baraton Main Stack TP156.P6.G74 2011 (Browse shelf(Opens below)) C.2 Available 79272

Includes bibliographical references and index.

Machine generated contents note: pt. I Introduction -- 1.Why are Green Polymerization Methods Relevant to Society, Industry, and Academics? / Michael A. R. Meier -- 1.1.Status and Outlook for Environmentally Benign Processes -- 1.2.Importance of Catalysis -- 1.3.Brief Summaries of Contributions -- References -- pt. II Integration of Renewable Starting Materials -- 2.Plant Oils as Renewable Feedstock for Polymer Science / Michael A. R. Meier -- 2.1.Introduction -- 2.2.Cross-Linked Materials -- 2.3.Non-Cross-Linked Polymers -- 2.3.1.Monomer Synthesis -- 2.3.2.Polymer Synthesis -- 2.4.Conclusion -- References -- 3.Furans as Offsprings of Sugars and Polysaccharides and Progenitors of an Emblematic Family of Polymer Siblings / Alessandro Gandini -- 3.1.Introduction -- 3.2.First Generation Furans and their Conversion into Monomers -- 3.2.1.Furfural and Derivatives -- 3.2.2.Monomers from Furfural -- 3.2.3.Hydroxymethylfurfural -- 3.3.Polymers from Furfuryl Alcohol -- 3.4.Conjugated Polymers and Oligomers -- 3.5.Polyesters -- 3.6.Polyamides -- 3.7.Polyurethanes -- 3.8.Furyl Oxirane -- 3.9.Application of the Diels-Alder Reaction to Furan Polymers -- 3.9.1.Linear Polymerizations -- 3.9.2.Non-linear Polymerizations -- 3.9.3.Reversible Polymer Cross-linking -- 3.9.4.Miscellaneous Systems -- 3.10.Conclusions -- References -- 4.Selective Conversion of Glycerol into Functional Monomers via Catalytic Processes / Joel Barrault -- 4.1.Introduction -- 4.2.Conversion of Glycerol into Glycerol Carbonate -- 4.3.Conversion of Glycerol into Acrolein/Acrylic Acid -- 4.4.Conversion of Glycerol into Glycidol -- 4.5.Oxidation of Glycerol to Functional Carboxylic Acid -- 4.5.1.Catalytic Oxidation of Glycerol to Glyceric Acid -- 4.5.2.Oxidative-Assisted Polymerization of Glycerol -- 4.5.2.1.Cationic Polymerization -- 4.5.2.2.Anionic Polymerization -- 4.6.Conversion of Glycerol into Acrylonitrile -- 4.7.Selective Conversion of Glycerol into Propylene Glycol -- 4.7.1.Conversion of Glycerol into Propylene Glycol -- 4.7.1.1.Reaction in the liquid Phase -- 4.7.1.2.Reaction in the Gas Phase -- 4.7.2.Conversion of Glycerol into 1,3-Propanediol -- 4.8.Selective Coupling of Glycerol with Functional Monomers -- 4.9.Conclusion -- References -- pt. III Sustainable Reaction Conditions -- 5.Monoterpenes as Polymerization Solvents and Monomers in Polymer Chemistry / Stewart P. Lewis -- 5.1.Introduction -- 5.2.Monoterpenes as Monomers -- 5.2.1.Terpenic Resins Overview -- 5.2.2.Concepts of Cationic Olefin Polymerization -- 5.2.3.Cationic Polymerization of β-Pinene -- 5.2.4.Cationic Polymerization of Dipentene -- 5.2.5.Cationic Polymerization of α-Pinene -- 5.2.6.Characteristics of Terpenic Resins -- 5.2.7.Applications of Terpenic Resins -- 5.2.8.Commercial Production and Markets of Terpenic Resins -- 5.2.9.Environmental Aspects of Terpenic Resin Production -- 5.3.Monoterpenes as Solvents and Chain Transfer Agents -- 5.3.1.Possibilities for Replacing Petroleum Solvents -- 5.3.2.Ring-Opening Polymerizations in Monoterpenes -- 5.3.3.Metallocene Polymerizations in Monoterpenes -- 5.4.Conclusion -- Acknowledgments -- References -- 6.Controlled and Living Polymerization in Water: Modern Methods and Application to Bio-Synthetic Hybrid Materials / Todd Emrick -- 6.1.Introduction -- 6.2.Ring-Opening Metathesis Polymerization (ROMP) -- 6.2.1.Water Soluble ROMP Catalysts -- 6.3.Living Free Radical Methods for Bio-Synthetic Hybrid Materials -- Acknowledgments -- References -- 7.Towards Sustainable Solution Polymerization: Biodiesel as a Polymerization Solvent / Somaieh Salehpour -- 7.1.Introduction -- 7.2.Solution Polymerization and Green Solvents -- 7.3.Biodiesel as a Polymerization Solvent -- 7.4.Experimental Section -- 7.4.1.Materials -- 7.4.2.Polymerization -- 7.4.3.Characterization -- 7.5.Effect of FAME Solvent on Polymerization Kinetics -- 7.5.1.Chain Transfer to Solvent Constant -- 7.5.2.Rate Constant -- 7.6.Effect of Biodiesel Feedstock -- 7.6.1.Polymerization Kinetics -- 7.6.2.Polymer Composition -- 7.7.Conclusion -- References -- pt. IV Catalytic Processes -- 8.Ring-Opening Polymerization of Renewable Six-Membered Cyclic Carbonates. Monomer Synthesis and Catalysis / Stephanie J. Wilson -- 8.1.Introduction -- 8.2.Preparation of 1,3-Propanediol from Renewable Resources -- 8.3.Preparation of Dimethylcarbonate from Renewable Resources -- 8.4.Synthesis of Trimethylene Carbonate -- 8.5.Six-Membered Cyclic Carbonates: Thermodynamic Properties of Ring-Opening Polymerization -- 8.6.Catalytic Processes Using Green Catalysts Methods -- 8.6.1.Cationic Ring-Opening Polymerization -- 8.6.2.Anionic Ring-Opening Polymerization -- 8.6.3.Enzymatic Ring-Opening Polymerization -- 8.6.4.Coordination-Insertion Ring-Opening Polymerization -- 8.6.4.1.Groups 13- and 14 Based Catalysts -- 8.6.4.2.Groups 4-12 Based Catalysts -- 8.6.4.3.Lanthanide-Based Catalysts -- 8.6.4.4.Groups 1 and 2 Based Catalysts -- 8.6.5.Organocatalytic Ring-Opening Polymerization -- 8.7.Thermoplastic Elastomers and their Biodegradation Processes -- 8.8.Concluding Remarks -- Acknowledgments -- References -- 9.Poly(lactide)s as Robust Renewable Materials / Andrew P. Dove -- 9.1.Introduction -- 9.1.1.The Lactide Cycle -- 9.2.Ring-Opening Polymerization of Lactide -- 9.2.1.Coordination-Insertion Polymerization -- 9.2.2.Organocatalytic Ring-Opening Polymerization -- 9.3.Poly(lactide) Properties -- 9.3.1.PLA Properties and Processing Effects -- 9.3.2.Polymer Blends -- 9.3.2.1.Poly(Lactide)/Poly(ε-Caprolactone) Blends -- 9.3.2.2.Other Biodegradable/Renewable Polyesters -- 9.4.Thermoplastic Elastomers -- 9.5.Future Developments/Outlook -- References -- 10.Synthesis of Saccharide-Derived Functional Polymers / Joachim Thiem -- 10.1.Introduction -- 10.2.Polyethers -- 10.3.Polyamides -- 10.4.Polyurethanes and Polyureas -- 10.5.Glycosilicones -- References -- 11.Degradable and Biodegradable Polymers by Controlled/Living Radical Polymerization: From Synthesis to Application / Nicolay V. Tsarevsky -- 11.1.Introduction -- 11.2.(Bio)degradable Polymers by CRP -- 11.2.1.Linear (Bio)degradable Polymers -- 11.2.1.1.Polymers with a Degradable Functional Group -- 11.2.1.2.Polymers with a Degradable Polymeric Segment -- 11.2.1.3.Polymers with Multiple Cleavable Groups or Polymeric Segments -- 11.2.2.Degradable Star Polymers -- 11.2.3.Degradable Graft Polymers (Polymer Brushes) -- 11.2.4.Hyperbranched Degradable Polymers -- 11.2.5.Cross-Linked Degradable Polymers -- 11.3.Conclusions -- Abbreviations -- References -- pt. V Biomimetic Methods and Biocatalysis -- 12.High-Performance Polymers from Phenolic Biomonomers / Tatsuo Kaneko -- 12.1.Introduction -- 12.2.Coumarates as Phytomonomers -- 12.3.LC Properties of Homopolymers -- 12.3.1.Syntheses and Structures -- 12.3.2.Solubility -- 12.3.3.Thermotropic Property -- 12.3.4.Ordered Structures -- 12.3.5.Cell Compatibility -- 12.4.LC Copolymers for Biomaterials -- 12.4.1.Lithocholic Acid as Co-monomer -- 12.4.2.Cholic Acid as Co-monomer -- 12.5.LC Copolymers for Photofunctional Polymers -- 12.5.1.Syntheses of P(4HCA-co-DHCA)s -- 12.5.2.Phototunable Hydrolyzes -- 12.5.3.Photoreaction of Nanoparticles -- 12.6.LC Copolymers for High Heat-Resistant Polymers -- 12.6.1.P(4HCA-co-DHCA) Bioplastics -- 12.6.2.Biohybrids -- 12.7.Conclusion -- Acknowledgments -- References -- 13.Enzymatic Polymer Synthesis in Green Chemistry / Inge van Tier Meulen -- 13.1.Introduction -- 13.2.Polymers -- 13.2.1.Polycondensates -- 13.2.1.1.Polyesters by Ring-Opening Polymerization -- 13.2.1.2.Polyesters by Condensation Polymerization -- 13.2.2.Polyphenols -- 13.2.3.Vinyl Polymers -- 13.2.4.Polyanilines -- 13.3.Green Media for Enzymatic Polymerization -- 13.3.1.Ionic Liquids -- 13.3.2.Supercritical Carbon Dioxide -- 13.4.Conclusions and Outlook -- References -- 14.Green Cationic Polymerizations and Polymer Functionalization for Biotechnology / Mustafa Y. Sen -- 14.1.Introduction -- 14.2.Enzyme Catalysis -- 14.2.1.Lipases -- 14.2.2.Candida antarctica Lipase B -- 14.2.3.CALB-Catalyzed Transesterification Reactions -- 14.3."Green" Cationic Polymerizations and Polymer Functionalization Using Lipases -- 14.3.1.Ring-Opening Polymerization -- 14.3.2.Enzyme-Catalyzed Polymer Functionalization -- 14.4.Natural Rubber Biosynthesis -- the Ultimate Green Cationic Polymerization -- 14.4.1.Anatomy of the NR Latex, and Structure of Natural Rubber -- 14.4.1.1.Structure of Natural Rubber -- 14.4.2.Biochemical Pathway of NR Biosynthesis -- 14.4.2.1.Monomer -- 14.4.2.2.Initiators -- 14.4.2.3.Catalyst: Rubber Transferase -- 14.4.3.Chemical Mechanism of Natural Rubber Biosynthesis -- 14.4.4.In vitro NR Biosynthesis -- 14.5.Green Synthetic Cationic Polymerization and Copolymerization of Isoprene.

There are no comments on this title.

to post a comment.